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Best titles are short conclusnons,
not long introductions. |
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POSTER CHILD OF SCIENCE

A poster is your first opportunity to organize and
communicate your reasearch to members outside
of your lab. It will help you 1o practise telling and
"drawing” your science story and its design should
be based on its concepts, themes and transitions,

Maost posters are bad not because they are ugly
(they ara) but bacause they fail to present concisa-
ly what was done and, more importantly, why it
was done. Most posters have too much on them.
Less s more; get to the point, then stop.
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Use figure titles to explain trends, not

merely to specify the axes.
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Share axes or align panels to clarity

variables or emphasize changing scale.
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Reveal qualitative tronds in small
multiples with order, cutoffs and cues.
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The poster is your prop. In most settings, you will
be there to present it. Match its content to the story
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you are the steward
of your science

Show your passion for the subject.
Be a good explainer.

Resist visual tropes, fluff and garnish.



design Is a process

Thank you for your submissions!
My redesigns are not the “best and only” options. They’re merely better options.

When | first look at a figure, | typically know what needs fixing
but | don’t always know how to fix it.



design Is a set of choices

When you speak, you generally know
what / why / why now
you’re saying something.

It’s the same with design except time
IS replaced by space.



you're 90% of the tool

Good design is never due to software expertise.
Know your software enough to make your ideas possible.

Learning tool XYZ will not make you a better communicator.



emphasize data

make other elements visually subordinate
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conclude first
and explain early

don’t squirrel important information
Into the least accessible part of the poster
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Exploring the impact of financial insecurity on adolescent health behaviors: How has COVID-19
influenced screen time, physical activity and diet quality?

lyoma Y. Edache’,

MSc; Mark Pitblado? Sarah M. Hutchinsen?®, PhD and Louise C. Masse!, PhD

School of Population and Public Health'; Department of Microbiology & Immunology?, Department of Pediatrics?, University of British Columbia

BACKGROUND

The COVID-19 pandemic disrupted Canadian families'
daily routines and social interactions due to
government-mandated physical distancing restrictions.
Three out of 10 Canadians report that COVID-19 has
negatively impacted their ability to meet financial
obligations', Health behaviors have also been impacted
as physical activity has decreased while screen time and
food consumption have increased?, Cumulatively, these
disruptions have increased parent and adolescent

amotional strain?.

OBJECTIVES

1) To investigate the link between financial security,
parent and adolescent emotional wellbeing and
adolescents’ health behaviors during the COVID-19

pandemic.
METHODS
}-\AE.:{\,"'»(.AH »L,rv;‘ni.-- .:I‘vti measures

Parents and grade 7 student pairs (N=355) completed an
online survey in May —June 2020, assessing family
financial security, parent and teen emotional wellbeing
(self-esteem, optimism, worry and depression) and teen
health behaviors {screen time and physical activity)

Adolescents completed three 24-hour dietary recalls
using the ASA24 platform. Dietary quality was computed
using the Healthy Eating Index (HEI)?, which evaluates
compliance of reported intake with national dietary
recommendations.

Statistical analysis

Structural equation modelling was used to examine
linear relationships using the Stata software (version

15.1)

THE UNIVERSITY OF BRITISH COLUMBIA
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security impacts adolescent health behaviors, As public policy addressing financial security may
indirectly improve adolescent health behaviors, our findings will inform COVID-19 public health
priorities — specifically, family-based efforts to support and promote adolescent health
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Exploring the impact of financial insecurity on adolescent health behaviors:
How has COVID-19 influenced screen time, physical activity and diet quality?

lyoma Y. Edachel, MSc Mark Pitblado2 Sarah M. Hutchinson3, PhD Louise C. Massel, PhD

1School of Population and Public Health

OBJECTIVES

To investigate the link between financial security, parent and
adolescent emotional wellbeing and adolescents’ health

Characteristics of participants (n = 355).

2Department of Microbiology & Immunology 3Department of Pediatrics, University of British Columbia

Associations between financial security, emotional wellbeing and adolescent health behaviors.

D e A OUID G e ac ADOLESCENT PROFILE
enaviors durin e - andemic. 0.96
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IMPLICATIONS sex (female) 199 54 n,% total income — financial security employment
Study results highlight the role of emotional wellbeing in the pathway weight (Ibs)  106.6 229 u,0
through which financial security impacts adolescent health behaviors. HEI score 57.6 112 p,0 !
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BACKGROUND

The COVID-19 pandemic disrupted Canadian families’
daily routines and social interactions due to
government-mandated physical distancing restrictions.
Three out of 10 Canadians report that COVID-19 has
negatively impacted their ability to meet financial
obligations’. Health behaviors have also been impacted
as physical activity has decreased while screen time and
food consumption have increased?. Cumulatively, these
disruptions have increased parent and adolescent
emotional strain?.

OBJECTIVES

1) To investigate the link between financial security,
parent and adolescent emotional wellbeing and
adolescents’ health behaviors during the COVID-19
pandemic.

METHODS

Analytical sample and measures

Parents and grade 7 student pairs (N=355) completed an
online survey in May —June 2020, assessing family
financial security, parent and teen emotional wellbeing
(self-esteem, optimism, worry and depression) and teen
health behaviors (screen time and physical activity).

Adolescents completed three 24-hour dietary recalls
using the ASA24 platform. Dietary quality was computed
using the Healthy Eating Index (HEI)3, which evaluates
compliance of reported intake with national dietary
recommendations.

Statistical analysis

Structural equation modelling was used to examine
linear relationships using the Stata software (version
15.1).

OBJECTIVES

To investigate the link between financial security, parent and
adolescent emotional wellbeing and adolescents’ health
behaviors during the COVID-19 pandemic.

IMPLICATIONS

Study results highlight the role of emotional wellbeing in the pathway
through which financial security impacts adolescent health behaviors.
As public policy addressing financial security may indirectly improve
adolescent health behaviors, our findings will inform COVID-19 public
health priorities — specifically, family-based efforts to support and
promote adolescent health behaviors and emotional wellbeing.

BACKGROUND

The COVID-19 pandemic disrupted Canadian families’ daily routines and
social interactions due to government-mandated physical distancing
restrictions. Three out of 10 Canadians report that COVID-19 has
negatively impacted their ability to meet financial obligations!. Health
behaviors have also been impacted as physical activity has decreased while
screen time and food consumption have increased2. Cumulatively, these
disruptions have increased parent and adolescent emotional strain2.

ANALYTICAL SAMPLE AND MEASURES

Parents and grade 7 student pairs (n = 355) completed an online survey
in May -June 2020, assessing family financial security, parent and teen
emotional wellbeing (self-esteem, optimism, worry and depression) and
teen health behaviors (screen time and physical activity). Adolescents
completed three 24-hour dietary recalls using the ASA24 platform.
Dietary quality was computed using the Healthy Eating Index (HEI)3,
which evaluates compliance of reported intake with national dietary
recommendations.

STATISTICAL ANALYSIS

Structural equation modelling was used to examine linear relationships
using the Stata software (version 15.1).

Significant P’ Covariance may be
regression coefficient & between observed variables or
p <0001 observed, u between their corresponding errors.
Bru ~ Byl + &
cov(y,v) n
Significant covariance
latent, x cov(e,E,) X‘ j cov(u,v)

€ cov(u,v)
v ns.p>0.05

observed, v




STATISTICAL ANALYSIS

Structural equation modelling was used to examine linear relationships

using the Stata software (version 15.1).

Signfficant
regression coafficient
2 < 0.001

latent, x

regresson coathcian
na p>005

Legend

Indicates significance at the p < 0.05 level

*Reverse coded, higher scome indicates lower levels of
depression or anxiety

For sex variables Male = 0 Female = 1

Standard @ ] p,:x-—ql-

Covariance may be
between observed variables or
between thewr corresponding emors.

cov(u,v) n
Significant covariance
cov(e,.&,) & cov(u,v)
cov(u,v)
nz.p>005



Table 1. Characteristics of participants (N=355)

Adolescent demographic profile
Age, Years, Mean {SD) 13.01{0.12}
Sex = Female, n (%) 199 (54.0)
Weight, Ibs, Mean (SD) 106.56 {22.90)
HE! score, Mean {SD) 57.61 (11.20)
Screen time, hours/week, Mean (SD) 11.84 (7.60)
Physically active days/week, n (%)
0 days 31(9.1)
1-3 days 120(353)
4-6 days 118 {34.8)
Parent demographic profile
Age, Years, Mean {SD) 45.95 (5.42)
Sex = Female, n (%) 285(79.7)
Ethnicity (%)
African American 5{1.4)
Caucasian 126 {36.3)
Chinese 93 (26.8)
Other 48{13.9)
South Asian 51(14.7)
South East Asian 24(6.9)
Annual household income (%)
$100,000 or higher 169 (48.2)
$80,000 to 599,999 29(8.3)
570,000 t0 579,999 16( 4.6)
$50,000 to 569,999 28( 8.0}
Less than $50,000 53(15.1)
Marital status, n (%)
Divorced 32(9.)
Married or common-law 301 (85.8)
Singie 13{(3.7)
Prefer not to answer 5{1.4)
Education, n (%)
High schoaol degree or less 27(2.7)
Went to college 122 (34.8)
Bachelors degree or above 202 (57.5)
Employment (%)
A homemaker 40(11.4)
Currently not warking 26 ( 7.4}
Employed for wages-full time 131 (51.7)
Employed for wages-part time 43{12.3)

Seif-employed 42 (12)

Characteristics of participants (n = 355).

ADOLESCENT PROFILE
age (years)

sex (female)

weight (Ibs)

HEI score

screen time, hours/week
physically active days/week
0 days

1-3 days

4-6 days

PARENT PROFILE

age (years)

sex (female)
ethnicity

African American
Caucasian
Chinese

South Asian
South East Asian
other

annual household income
> $100,000

$80,000 to $99,999
$70,000 to $79,999
$50,000 to $69,999

< $50,000

marital status

married or common-law
divorced

single

prefer not to answer

education

bachelors degree or above
went to college
high school degree or less

employment
full-time wage
part-time wage
self-employed
homemaker
currently not working

13.01
199
106.6
57.6
11.8

31
120
118

45.9
285

126
93
51
24
48

169
29
16
28
53

301
32
13

202
122
27

181
43
42
40
26

0.12
54
22.9
11.2
7.6

9.1
35
35

54
80

1.4
36.3
26.8
14.7
6.9
13.9

48.2
8.3
4.6
8.0
15.1

85.8
9.1
3.7
1.4

57.5
34.8
7.7

52
12
12
11
7

U, 0
n, %

o
o

U, 0
n, %

U, 0
n, %
n, %

n, %

n, %

n, %

n, %



Yes (&) B SE Odds ratio (95% CI) P
Are you concerned about Newcastle disease? (n—- 398)
Age 0.007
<24 years 5(17.2) 0 - 1.00 -
25-34 years 10(28.6) 1.33 0.86 3.80 (0.8-27.6)
35-44 years 22(36.1) 1.37 0.82 3.092 (0.9 -26.9)
45-54 years 42(43.8) 1.85 0.79 6.35 (1.7 -42.0)
55-b4 years 36(50.0) 203 0.80 162 (1.9-51.5)
+65 years 63 (60.0) 2.24 0.79 939 (2.4-62.4)
State 0.042
SAJWA 27(31.8) 0 - 1.00 -
NSW 58(47.5) 0.59 0.35 1.80 (0.9-3.6)
QLD 45(47.4) 0.49 036 1.63 (0.B-3.3)
TAS 15(33.3) 023 0.45 0.79 (0.3-1.9)
VIC 29(64.4) 1.04 0.45 282 (1.2-6.9)
Do you keep a written record of treatments given to your birds? (n- 398)
Years owning poultry 0.006
1-5 years 19({51.4) 0 - 1.00 -
6-15 years 21(28.4) —1.54 0.51 0.21 (0.1-0.6)
16-29 years 313(45.2) —075 0.49 047 (0.2-1.2)
+30 years 70(33.2) —-1.39 0.45 025 (0.1-0.6)
Sex 0.066
Female 38(44.2) 0 = 1.00 =
Male 102(33.9) —0.56 0.30 0.57 (0.3-1.0)
Have you contacted a veterinarian in the past 12 months for the health of your birds?(n- 398)
Years owning poultry 0.006
1-5 years 17(45.9) 0 - 1.00 -
6-15 years 22(29.7) —0.71 0.51 049 (0.2-1.3) 0.017
16-29 years 15(20.5) —1.44 0.54 0.24 (0.1-0.7)
+30 years 38(18.0) —-1.49 0.48 023 (0.1-0.6)
Sex
Female 34(39.5) 0 - 1.00 -
Male 54(17.9) —-0.79 0.33 046 (0.2-0.9)
State 0.040
SA/WA 13(15.3) 0 - 1.00 -
NSW 37(303) 1.01 0.46 2.75 (1.1-6.6)
QLD 17(17.9) 0.18 0.47 1.19 (0.5-3.0)
TAS 11(24.4) 0.91 0.52 249 (0.9-7.1)
VIC 14(31.1) 1.03 0.51 279 (1.0-7.8)

" Number of exhibitors contributing to the regression model analysis.



P Yes (%)t B SE/; OR 95% CI

Are you concerned 46.0
about Newcastle disease?

Age (years) 0.007

<24% 17.2
25-34 28.6 1.33  0.86 3.8 0.8-27.6
35-44 36.1 1.37  0.82 39 09-269
45-54 43.8 1.85  0.79 6.3 1.7-42.0
55-64 50.0 203 0.80 76 19-51.5
265 60.0 224 079 94 24-624
State 0.007
SA/WA 31.8
NSwW 47.5 0.59 0.35 1.8 09-3.6
QLD 47.4 0.49 0.36 1.6 0.8-3.3
TAS 33.3 -0.23 045 0.8 03-1.9
VIC 64.4 1.04 045 28 1.2-69
Do you keep a written record
of treatments given to your birds? 35.2

Years owning poultry 0.006

1-5 51.4
6-15 28.4 -1.54 0.51 0.2 01-0.6
16-29 452 -0.75 0.49 0.5 02-12
230 33.2 -1.39 0.45 0.2 0.1-0.6
Sex 0.066
Female 44.2
Male 33.9 -0.56 0.30 0.6 03-1.0
Have you contacted a veterinarian in the
past 12 months for the health of your birds? 35.2
Years owning poultry 0.006
1-5 45.9
6-15 29.7 -0.71  0.51 05 02-13
16-29 20.5 -1.44 0.54 0.2 0.1-0.7
230 18.0 -1.49 0.48 0.2 01-0.6
Sex 0.017
Female 39.5
Male 17.9 -0.79 0.33 0.5 0.2-0.9
State 0.040
SA/WA 15.3
NSwW 30.3 1.01 0.46 28 11-6.6
QLD 17.9 0.18 0.47 1.2 0.5-3.0
TAS 24.4 091 0.52 25 09-7.1
VIC 31.1 1.03 0.51 28 1.0-7.8

1 Out of n = 398 survey participants.
¥ For first factor level, f = 0, OR = 1, SEg and 95% Cl are not defined.



029
p=05 p=0.048
p=068 p=007
p < 0.0001 p=0179
p=05 g =00%4
p < 0.0001 p=0.072
=054 @ = -0.0071
p < 0.0001 p =089

B =057 p=-018
p < 0.0001 p < 0.0001
p =057 B=-017
p < 0.0001 p < 0.0001
p=052 p=-02
P < 0,0001 P < 0,0001

B =034 B =-053 B =043
p < 0.0001 P < 0.0001 p < 0.0001

Legend

Indicates significance at the p < 0.05 fevel

*Reverss coded, higher score indicates lower levels of
deprassion or anxiety

0 For sex variables Male = 0 Female = 1
Standard @ ] @ - .
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Lorem ipsum dolor sit
amet, consectetuer adipi-
scing elit, sed diam
nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat vo-
lutpat. Ut wisi enim ad

minim veniam, quis nos-
trud exerci tation ullam-
corper suscipit lobortis
nisl ut aliquip ex ea com-
modo consequat. Duis
autem vel eum iriure dolor
in hendrerit in vulputate
velit esse molestie conse-
quat, vel illum dolore eu
feugiat nulla facilisis at
vero eros et accumsan et
iusto odlio dignissim qui
blandit praesent luptatum

Lorem ipsum dolor sit
amet, consectetuer adipi-
scing elit, sed diam
nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat vo-
lutpat. Ut wisi enim ad

minim veniam, quis nos-
trud exerci tation ullam-
corper suscipit lobortis
nisl ut aliquip ex ea com-
modo consequat. Duis
autem vel eum iriure dolor
in hendrerit in vulputate
velit esse molestie conse-
quat, vel illum dolore eu
feugiat nulla facilisis at
vero eros et accumsan et
iusto odlio dignissim qui
blandit praesent luptatum

0.34 -0.53

?

Lorem ipsum dolor sit
amet, consectetuer adipi-
scing elit, sed diam
nonummy nibh euismod

teen
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Lorem ipsum dolor sit
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scing elit, sed diam

-0.0071

minim veniam, quis nos-
trud exerci tation ullam-
corper suscipit lobortis

N

Lorem ipsum dolor sit

iscing elit, sed diam

: amet, consectetuer adip- :

0.64

n self-esteem

-0.18
0.57 0.57
0.65
0.57 o -0.17
> en optimism < teen gender
0.52 0.012 -0.20
0.70
teen depression*
0.43
I N Lorem ipsum dolor sit

Lorem ipsum dolor sit
amet, consectetuer adipi-
scing elit, sed diam
nonummy nibh euismod

amet, consectetuer adipi-
scing elit, sed diam
nonummy nibh euismod
tincidunt ut laoreet dolore
magna aliquam erat vo-
lutpat. Ut wisi enim ad

minim veniam, quis nos-
trud exerci tation ullam-
corper suscipit lobortis
nisl ut aliquip ex ea com-



Exploring the impact of financial insecurity on adolescent health behaviors:
How has COVID-19 influenced screen time, physical activity and diet quality?

lyoma Y. Edachel, MSc Mark Pitblado2 Sarah M. Hutchinson3, PhD Louise C. Massel, PhD

1School of Population and Public Health

OBJECTIVES

To investigate the link between financial security, parent and
adolescent emotional wellbeing and adolescents’ health

Characteristics of participants (n = 355).

2Department of Microbiology & Immunology 3Department of Pediatrics, University of British Columbia

Associations between financial security, emotional wellbeing and adolescent health behaviors.
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Exploring the impact of fin
How has COVID-19 influen

hlescent health behaviors: How has COVID-19

lyoma Y. Edachel, MSc Mark Pitblado2 Sarg

1School of Population and Public Health 2Department of Microbiology & |

OBJECTIVES 'EV EINDINGS

To investigate the link between financial security, parent and
adolescent emotional wellbeing and adolescents’ health
behaviors during the COVID-19 pandemic.

IMPLICATIONS

Study results highlight the role of emotional wellbeing in the pathway
through which financial security impacts adolescent health behaviors. - |

As public policy addressing financial security may indirectly improve Totad Income | - Financial Security " Employmen ] ;
adolescent health behaviors, our findings will inform COVID-19 public . - T = T — .
health priorities — specifically, family-based efforts to support and
promote adolescent health behaviors and emotional wellbeing.

BACKGROUND e —

The COVID-19 pandemic disrupted Canadian families’ daily routines and oo il ~'!~
social interactions due to government-mandated physical distancing . Weltieing y
restrictions. Three out of 10 Canadians report that COVID-19 has . el
negatively impacted their ability to meet financial obligations!. Health

behaviors have also been impacted as physical activity has decreased while

screen time and food consumption have increased2. Cumulatively, these

disruptions have increased parent and adolescent emotional strain2.

ANALYTICAL SAMPLE AND MEASURES |

Parents and grade 7 student pairs (n = 355) completed an online survey
in May -June 2020, assessing family financial security, parent and teen i Welltxrg
emotional wellbeing (self-esteem, optimism, worry and depression) and
teen health behaviors (screen time and physical activity). Adolescents
completed three 24-hour dietary recalls using the ASA24 platform.
Dietary quality was computed using the Healthy Eating Index (HEI)3,
which evaluates compliance of reported intake with national dietary P i -
recommendations. [ Healty Cateng | |

STATISTICAL ANALYSIS

Structural equation modelling was used to examine linear relationships
using the Stata software (version 15.1).

SCraantime | Physscal ACtivity l
. : ) - ——

Significant P’ Covariance may be
9 oefficient e between observed variables or
p <0.001 observed, u between their corresponding errors.
Bxu ~ Byl + £
cov(u,v) n
Significant covariance
latent, x cov(e,E,) X‘ cov(u,v)
£ cov(u,v)
v >0.05 - F L
IMPLICATION:
’ > o L
By observed, v .
Non-significant
icient

Study results highlight the role of emotional wellbeing in the pathway through which financial

security impacts adolescent health behaviors, As public policy addressing financial security may
1 Statistics Canada’s March 2020 Canadian Perspectives Survey Series A .

2 Carroll, N., Sadowski, A., Laila, A., Hruska, V., Nixon, M., Ma, D. W,, & Haines, J.
(2020). Nutrients, 12(8), 2352. priorities — specifically, family-based efforts to support and promote adolescent health

3 Guenther, P. M., Reedy, J., & Krebs-Smith, S. M. (2008). Journal of the American
Dietetic Association, 108(11), 1896-1901

indirectly improve adolescent health behaviors, our findings will inform COVID-19 public health

behaviors and emotional wellbeing
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Differentially-Expressed miRNAs in the Human Placenta «

Nikita Telkar' 3, Victor D. Martinez’, Victor Yuan', Magda E. Price'2, Brenda C. Minatel®, Erin A. Marshall®,

Wendy P. Robinson'?, Wan L. Lam?

'BC Children’s Hospital Resaarch Institute, Vancouver, British Columbita, Canada

Depanment of Medical Geneties, University of British Columbia, Vancouver, British Columbla, Canada
'‘British Columbia Cancer Research Centre, 675 West 10th Ave, Vancouver, British Columbla, Canada

Introduction

+ Placental gene regulation s crucial in the
maintenance of a healthy pregnancy; aberrant
expression can lead to severe complications in both
mother and fetus'.

* MicroRNAs (miRNAs) are known regulators of gene
expression, and cause repression by destabilizing
target mRNA molecules??,

« Several factors are associated with changes in gene

ion*; however, these factors have not yet
been fully elucidated in the placenta.

Question
Does placental miRNA expression differ by inherent
biological, and extrinsic technical variables?

Methods

30 placental samples were previously subjected to
RNA-seq, enriching for small RNAs.

N =30 Tnmesterl Trimester 2 Trimester 3
N=5(166%) N=16(53%) N =9 (30%)
‘Neural Tube
Beforts 0/5 6/16 0/9
Sex 3F/2M 10F/6M 4F/5M

+ 13,038 mlRNAs were filtered at RPM of >=1 and if
present in >=2 samples, giving 527 miRNAs.

* Relative Log Expression (RLE) normalization was
applied, as it performs best for small sequences.

Results
Samples separate by trimester

*+ Principal Component Analysis showed that the
samples distinctly separated by trimester (for PC1 vs
PC2), especially for trimester 1 samples.

* Samples did not group by sex or condition status
(control/NTD), however, this might be because the
study was underpowered to detect an association,

Trimester: PCI vs PC2
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Trimester and Flow Cell contribute to the most
variance in the data
+ Both trimester and sequencer flow cell were

associated with PC1 explaining 48% of the
variance in observed, followed by condition.
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MiRNAs show variable expression across
trimesters

» Linear regression was applied to identify
differentially-expressed (DE) miRNAs, followed by
multiple-testing correction using the Benjamini-
Hochberg method at an FDR of 0.05.

miRNA ~Trimester + Sex + FlowCell
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« 6 miRNAs were commonly DE for trimester 1, 2, and
term samples, of which two are novel miRNAs. All
showed an overall negative correlation with
trimester. No miRNAs were DE by sex or condition.
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Conclusions

1. Placental gene regulation is influenced by
numerous variables, both biological and technical.

2. There still exist undiscovered, novel placental
miRNAs; their characterization would provide
better understanding of the human placenta and
improved care of pregnant women and the fetus.
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INTRODUCTION

Placental gene regulation is crucial in the
maintenance of a healthy pregnancy; aberrant
expression can lead to severe complications in both
mother and fetus [1].

MicroRNAs (miRNAs) are known regulators of gene
expression, and cause repression by destabilizing
target mRNA molecules [2,3].

Several factors are associated with changes in gene
expression [4,5]. However, these factors have not yet
been fully elucidated in the placenta.

KEY OBSERVATIONS

Placental gene regulation is influenced by numerous
variables, both biological and technical.

up down total
T1vs T2 0 161 161
T1 vs Term 2 205 207
T2 vs Term 20 60 80

There still exist undiscovered, novel placental
miRNAs; their characterization would provide better
understanding of the human placenta and improved
care of pregnant women and the fetus.

METHODS

30 placental samples were previously subjected to
RNA-seq, enriching for small RNAs.

trimester n sex neural tube
F M defects
1 5 17% 3 2 0
2 16 53% 10 6 6
3 9 3% 4 5 9

527/13,038 miRNAs were present in more than one

sample with RPM >1. Relative Log Expression (RLE)
normalization was applied, which performs best for

small sequences.

PC2

log10 RPM
2

trimester
sex
flow cell

condition

SAMPLES SEPARATE BY TRIMESTER

T

.

T3

T2 Samples distinctly separate by trimester, especially for T1.
Samples did not group by sex or condition status (control/NTD).

PC1 1

MIRNAS SHOW VARIABLE EXPRESSION ACROSS TRIMESTERS

sample 30

This may be due to lack of power to detect this association.

miRNA ~ Trimester + Sex + Flow Cell

hsa-miR Linear regression was applied to identify
— 148a-5p Differentially-expressed (DE) miRNAs
were identified using linear regression
10218-5p | .o  With Benjamini-Hochberg multiple test
— 9102-5p correction at FDR = 0.05.
378a-5p 6 miRNAs were commonly DE for T1, T2
— 21-3p and Term samples. Two were novel.
All showed an overall negative
758-5p correlation with trimester. No miRNAs

were DE by sex or condition.

TRIMESTER AND FLOW CELL CONTRIBUTE TO THE MOST VARIANCE IN THE DATA

1

2 3 456 7 8 9101112131415 1617 18
PC

R2
0.4
0.3
0.2
0.1

P-value
o <0.05
o <0.01 Both trimester and sequencer flow cell
e <0.001 were associated with PC1, explaining

48% of the variance in observed, fol-
lowed by condition.

[1]1 B Cox et al. Am J Obstet Gynecol (2015) 213:5138-S151 (2015) [2] J-F Mouiilletet et al. Am J Obstet Gynecol (2015) 213:5S163-S172 [3] DM Morales-Prieto et al. J Rep Immun (2013) 97:51-61 [4]
DA Hughes et al. Genome Biol (2015) 16:54 [5] HEJ Yong & S-Y Chan Hum Reprod Update (2020) 26: 799-840



Does placental miRNA expression differ by inherent
biological and extrinsic technical variables?

Yes, but it’'s more complicated than that.

Introduction

+ Placental gene regulation is crucial in the
maintenance of a healthy pregnancy; aberrant
expression can lead to severe complications in both
mother and fetus'.

« MicroRNAs (miRNAs) are known regulators of gene
expression, and cause repression by destabilizing
target mRNA molecules?®?,

+ Several factors are associated with changes in gene
expression®®; however, these factors have not yet
been fully elucidated in the placenta.

Question
Does placental miRNA expression differ by inherent
biological, and extrinsic technical variables?

Methods

30 placental samples were previously subjected to
RNA-seq, enriching for small RNAs.

N=30  N=spee%) N=16(53% N =9 [30%)
Neural Tube
Defects

Sex 3F/2M I0F/6M 4F/5M

* 13,038 miRNAs were filtered at RPM of >=1 and if
present in >=2 samples, giving 527 miRNAs.

* Relative Log Expression (RLE) normalization was
applied, as it performs best for small sequences.

0/5 6/16 0/9

Results
Samples separate by trimester

* Principal Component Analysis showed that the
samples distinctly separated by trimester (for PC1 vs
PC2), especially for trimester 1 samples.

+ Samples did not group by sex or condition status
(control/NTD), however, this might be because the
study was underpowered to detect an association

Trnimester | Trimester 2 Trimester 3
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expression can lead to severe complications in both
mother and fetus [1].

MicroRNAs (miRNAs) are known regulators of gene
expression, and cause repression by destabilizing
target mRNA molecules [2,3].

Several factors are associated with changes in gene
expression [4,5]. However, these factors have not yet
been fully elucidated in the placenta.

KEY OBSERVATIONS

Placental gene regulation is influenced by numerous
variables, both biological and technical.

up down total
T1vs T2 0 161 161
T1 vs Term 2 205 207
T2 vs Term 20 60 80

There still exist undiscovered, novel placental
miRNAs; their characterization would provide better
understanding of the human placenta and improved
care of pregnant women and the fetus.

METHODS

30 placental samples were previously subjected to
RNA-seq, enriching for small RNAs.

sex neural tube

trimester n
F M defects
1 5 17% 3 2 0
2 16 53% 10 6 6
3 9 30% 4 5 9

527/13,038 miRNAs were present in more than one

sample with RPM >1. Relative Log Expression (RLE)
normalization was applied, which performs best for

small sequences.

[1] B Cox et al. Am J Obstet Gynecol (2015) 213:S138-S151
(2015) [2] J-F Mouiilletet et al. Am J Obstet Gynecol (2015)
213:5163-S172 [3] DM Morales-Prieto et al. J Rep Immun
(2013) 97:51-61 [4] DA Hughes et al. Genome Biol (2015)

16:54 [5] HEJ Yong & S-Y Chan Hum Reprod Update (2020)
26: 799-840



N = 20 Trimester1 Trimester2 Trimester 3 up down  total
N=5(16.6%) N=16(53%) N =9 (30%)
T1vs T2 0) 161 161
Neg‘;?gébe 0/5 6/16 0/9 TivsTerm 2 205 207
T2 vs Term 20 60 80
Sex 3F/2M I0F/6M 4F/5M
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Comparison Upregulated Downregulated Total rimester M defects
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KEY OBSERVATIONS METHODS

Placental gene regulation is influenced by numerous
variables, both biological and technical.

up down total
T1vs T2 0 161 161
T1 vs Term 2 205 207
T2 vs Term 20 60 80

There still exist undiscovered, novel placental
miRNAs; their characterization would provide better
understanding of the human placenta and improved
care of pregnant women and the fetus.

30 placental samples were previously subjected to
RNA-seq, enriching for small RNAs.

trimester n sex neural tube
F M defects

1 5 17% 3 2 0

2 16 53% 10 6 6

3 9 30% 4 5 9

527/13,038 miRNAs were present in more than one
sample with RPM >1. Relative Log Expression (RLE)
normalization was applied, which performs best for
small sequences.



Results

Samples separate by trimester

* Principal Component Analysis showed that the
samples distinctly separated by trimester (for PC1 vs
PC2), especially for trimester 1 samples.

* Samples did not group by sex or condition status
(control/NTD), however, this might be because the
study was underpowered to detect an association,
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Trimester and Flow Cell contribute to the most
variance in the data

+ Both trimester and sequencer flow cell were
associated with PC1 explaining 48% of the
variance in observed, followed by condition.
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MiRNAs show variable expression across
trimesters
* Linear regression was applied to identify
differentially-expressed (DE) miRNAs, followed by
multiple-testing correction using the Benjamini-
Hochberg method at an FDR of 0.05.
miRNA ~Trimester + Sex + FlowCell

« 6 miRNAs were commonly DE for trimester 1, 2, and

term samples, of which two are novel miRNAs. All
showed an overall negative correlation with
trimester. No miRNAs were DE by sex or condition.

RPM Scaled Values of the & DE miRNA
FDR <0.05
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condition

SAMPLES SEPARATE BY TRIMESTER

T1
&,
T3
T2 Samples distinctly separate by trimester, especially for T1.
Samples did not group by sex or condition status (control/NTD).
: . This may be due to lack of power to detect this association.
-1 PC1 1

MIRNAS SHOW VARIABLE EXPRESSION ACROSS TRIMESTERS

® oo ° hsa-miR
[ ] ° () ® [ J °
NI e e — 148a-5p
10218-5p
va_fe . 2 ..2,:. %, — 9102-5p | ¥
W ) o & [ ] W
W._OT:T == 378a_5p
— 21-3p
758-5p
1 sample 30

miRNA ~ Trimester + Sex + Flow Cell

Linear regression was applied to identify
Differentially-expressed (DE) miRNAs
were identified using linear regression
with Benjamini-Hochberg multiple test
correction at FDR = 0.05.

6 miRNAs were commonly DE for T1, T2
and Term samples. Two were novel.

All showed an overall negative
correlation with trimester. No miRNAs
were DE by sex or condition.

TRIMESTER AND FLOW CELL CONTRIBUTE TO THE MOST VARIANCE IN THE DATA

R2  P-value

e o o o 0.4 o <0.05

° 0.3 o <0.01

o ° o 0.2 e <0.001
,n o 0.1

12 3 45 6 7 8 9101112131415 1617 18
PC

Both trimester and sequencer flow cell
were associated with PC1, explaining
48% of the variance in observed, fol-
lowed by condition.
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The placenta is not an asexual organ:

Patterns of sex-specific autosomal DNA methylation
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Patterns of sex-specific autosomal DNA methylation
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SEX-SPECIFIC PATTERNS OF DNA METHYLATION

Sex differences exist in healthy pregnancy and certain
adverse perinatal outcomes, and appear to be partially
mediated by the placental.

The fetus and placenta possess the same sex
chromosome complement, except in rare cases.

Placental DNA methylation (DNAme) differs by sex due
to X chromosome inactivation, but other features, such
as fetal sex hormones and autosomal DNAme likely
contribute to placental sex differences as well.

We hypothesize that sex-specific patterns of DNA
methylation exist at autosomal loci in the human
placenta, and may be related to sex-specific placental
function.

Genome-wide placental DNAme is not sex-specific

all autosomal loci (ns)

avg Alu DNAme

avg LINE1 DNAme

There were no significant differences by
sex in average DNAme at all autosomal
loci or at Alu or LINE1 elements.

Specific autosomal CpG sites are differentially
methylated by sex

DNAme;; ~ sex; + dataset; + GA,; + ethnicity; + &jj

324,104 autosomal CpGs. Adjusted for GA, ethnicity, and dataset.

FDR A8 >0 >5% >10% >20%
<0.05 24,715 2,942 166 4
<0.01 14,108 2,682 166 4
* nn,x%
-log1o FDR e nn,y%

40

10

FDR = 0.01
0

-0.10

AB = Brmale ~ Bremale
Sex-specific DNAme

. ) GSE70453 GSE115508
patterns validate in
independent cohorts
Samples cluster by sex in two inde-
pendent datasets at top 166 DM p<10-15 p <10-15
loci, suggesting a robust sex effect AU > 80 AU > 80

at these loci. P-value from sigClust2.

Cluster stable (pvclust) at AU > 80.

Significant patterns of differential Y
DNAme by sex validate at 90% of

loci in GSE70453 and GSE115508

(R=0.62, p<2.2e-16).

[1] Clifton 2010. Placenta 21:S33-S39. [2] Teschendorff et al. 2013. Bioinformatics 29:189-96.

[3] Liu et al. 2008. J Am Stat Assoc 103:1281. [4] Suzuki & Shimodaira 2006. Bioinformatics
12:1540-42. [5] Kuleshov et al. 2016. Nucleic Acids Res gkw377.

PC2 005 .

ROBUST SEX-SPECIFIC AUTOSOMAL DNAme SIGNATURES EXIST
IN THE HUMAN PLACENTA.

Placental autosomal DNAme patterns are continuous between the
sexes, rather than discrete. This may be related to interactions between
autosomal and X chromosomal loci; other unmeasured biological factors
may contribute (e.g. Fetal or maternal sex hormones).

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-
ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis.

Sex-specific autosomal DNAme reflects sex-specific function of the
human placenta and may provide insight into fetal health sex disparities,
but is not sufficient to explain sex-specific outcomes.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-
ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis.

Sex-specific differentially methylated sites are biologically interesting

ARHGAP15 (chr2) ZNF300 (chré)
present in placental exomes higher expression in female placentas

0 200 400 600
distance to TSS

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet

dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscip-

it lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit
esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim

Autosomal DNAme signatures are not sexually dimorphic

Samples fall across a continuum of sex when investigating DNAme patterns at top 166 DM loci.

~0.04 This trend is significantly associated with
— Increased average LINE1 DNAme

— Positive or negative deviations from population mean X
chromosome DNAme.

This trend is not associated with
— Outlying autosomal DNAme (% highly variable probes)

— Sex annotation errors

— Technical factors or batch effects.

— DM loci proximity to sex-hormone binding sites.
-0.10 o 0.10
— Biological variables (genetic ancestry, gestational age,

birthweight, maternal age).

Females with outlying X-linked DNAme relative to
population trends have more male-like DNAme at top
autosomal DM sites, and vice-versa.

0.44 0.46 0.48 0.50
autosomal B
Illumina 450K DNAme data from healthy normal placentas were obtained

E from publicly available datasets (>37 weeks gestation, no preeclampsia, no
8. known chromosomal abnormalities). Sample sex was assessed with XY

97, probes. Data were BMIQ normalized and filtered to remove poor quality,

non-variable, non-specific, and XY probes (nfilt=161,408). Log-transformed

M values at 324,104 autosomal CpG sites used in downstream analysis.

Samples & Methods

Thank you to all patients and families who kindly donated samples, and members of the

Robinson Lab, especially WPR, VY, MSP, and GDG for valuable feedback. This work was
supported by the Department of Medical Genetics (UBC) and the Canadian Institutes of

Health Research (ICT-163379,CIHR SVB-158613).
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THE PLACENTA IS NOT AN ASEXUAL ORGAN
Patterns of sex-specific autosomal DNA methylation
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SEX-SPECIFIC PATTERNS OF DNA METHYLATION

Sex differences exist in healthy pregnancy and certain
adverse perinatal outcomes, and appear to be partially
mediated by the placental.

The fetus and placenta possess the same sex
chromosome complement, except in rare cases.

Placental DNA methylation (DNAme) differs by sex due
to X chromosome inactivation, but other features, such
as fetal sex hormones and autosomal DNAme likely
contribute to placental sex differences as well.

We hypothesize that sex-specific patterns of DNA
methylation exist at autosomal loci in the human
placenta, and may be related to sex-specific placental
function.

Genome-wide placental DNAme is not sex-specific

all autosomal loci (ns) avg Alu DNAme avg LINE1 DNAme

Specific autosomal CpG sites are differentially
methylated by sex

DNAme;; ~ sex; + dataset; + GA; + ethnicity; + &;;

324,104 autosomal CpGs. Adjusted for GA, ethnicity, and dataset.

FDR A3 >0 > 5% >10% >20%
<0.05 24,715 2,942 166 4
<0.01 14,108 2,682 166 4

Sex-specific DNAme
patterns validate in
independent cohorts

Samples cluster by sex in two inde-
pendent datasets at top 166 DM
loci, suggesting a robust sex effect
at these loci. P-value from sigClust2.
Cluster stable (pvclust) at AU > 80.
Significant patterns of differential
DNAme by sex validate at 90% of
loci in GSE70453 and GSE115508
(R=0.62, p<2.2¢e-16).

[1] Clifton 2010. Placenta 21:S33-S39. [2] Teschendorff et al. 2013. Bioinformatics 29:189-96.
[3] Liu et al. 2008. J Am Stat Assoc 103:1281. [4] Suzuki & Shimodaira 2006. Bioinformatics

12:1540-42. [5] Kuleshov et al. 2016. Nucleic Acids Res gkw377.

ROBUST SEX-SPECIFIC AUTOSOMAL DNAme SIGNATURES EXIST
IN THE HUMAN PLACENTA.

Placental autosomal DNAme patterns are continuous between the
sexes, rather than discrete. This may be related to interactions between
autosomal and X chromosomal loci; other unmeasured biological factors
may contribute (e.g. Fetal or maternal sex hormones).

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-
ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis.

Sex-specific autosomal DNAme reflects sex-specific function of the
human placenta and may provide insight into fetal health sex disparities,
but is not sufficient to explain sex-specific outcomes.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-
ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis.

Sex-specific differentially methylated sites are biologically interesting

ARHGAP15 (chr2) ZNF300 (chré)
present in placental exomes higher expression in female placentas

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet 055
dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscip-
it lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit

esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim

Autosomal DNAme signatures are not sexually dimorphic

Samples fall across a continuum of sex when investigating DNAme patterns at top 166 DM loci.

This trend is significantly associated with
— Increased average LINE1 DNAme

— Positive or negative deviations from population mean X
chromosome DNAme.

This trend is not associated with

— Outlying autosomal DNAme (% highly variable probes)
— Sex annotation errors

— Technical factors or batch effects.

40
— DM loci proximity to sex-hormone binding sites.

— Biological variables (genetic ancestry, gestational age,

birthweight, maternal age). %

Females with outlying X-linked DNAme relative to
population trends have more male-like DNAme at top
autosomal DM sites, and vice-versa.

10

FDR =001
0

AR - R

male ~ Bremale

GSE70453

p <10-15

Samples & Methods  Iliumina 450K DNAme data from healthy normal placentas were obtained AU >80

from publicly available datasets (>37 weeks gestation, no preeclampsia, no
known chromosomal abnormalities). Sample sex was assessed with XY
probes. Data were BMIQ normalized and filtered to remove poor quality,
non-variable, non-specific, and XY probes (nfilt=161,408). Log-transformed
GSE11 on) (44 M values at 324,104 autosomal CpG sites used in downstream analysis.

GEO Acc

GSE10f

Thank you to all patients and families who kindly donated samples, and members of the

Robinson Lab, especially WPR, VY, MSP, and GDG for valuable feedback. This work was
supported by the Department of Medical Genetics (UBC) and the Canadian Institutes of

Health Research (ICT-163379,CIHR SVB-158613).
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There were no significant differences by
sex in average DNAme at all autosomal
loci or at Alu or LINE1 elements.

GSE115508

p <10-15
AU > 80
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The placenta is

Patterns of sex-spe
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Introduction

¢ Sex differences cust in healthy pregnancy and
certim advetse pernatal outcomes, and appeat
10 be partially mediated by the placenta '

¢ The fetus and placenta possess the same ses
chromozame complement, except i rare cases

+ Plcentsl DNA methylation (DNAmse) differs by
s2x due to X chromosome inactvation, but other
features, such as fetal sex hormones and
autosomal ONAme likely contnbute to placental
sox differences as wel

We hypothesize that sex-specific pattarns of DNA

methylation exist at autosomal Jocd in the human

placenta, and may be related to sex-specific

placental function,

Aims

1. Mdentify autosomal DNAmMe signatures
MAOTIAted With bidlopcsl sex

1. Validate robust patterns of sex specific ONAme
w1 independent dmtasels

3. Investigate relaticosdups Detween other
placental features and sex-specific DNAMY

Samples & Methods

¢ uming 450K DNAmMe data from healthy normal
placentas were obtained fram publicly avadable
datasets (>37 weeks gestation, no preecampsia
00 kngram chromosamal aboormabties)

+ Sample sex was assessed with XY probes,

¢ Data wore BVMQ normalized and filtered 1o
remave poor guality, non-varable, non-speofic,
and XY probas (n, ~161 808)

* Log-transformed M values at 324,104 autosomal
CpG sites used in downstream analysis
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SEX-SPECIFIC PATTERNS OF DNA METHYLATION

Sex differences exist in healthy pregnancy and certain
adverse perinatal outcomes, and appear to be partially
mediated by the placental.

The fetus and placenta possess the same sex
chromosome complement, except in rare cases.

Placental DNA methylation (DNAme) differs by sex due
to X chromosome inactivation, but other features, such
as fetal sex hormones and autosomal DNAme likely
contribute to placental sex differences as well.

We hypothesize that sex-specific patterns of DNA
methylation exist at autosomal loci in the human
placenta, and may be related to sex-specific placental

ROBUST SEX-SPECIFIC AUTOSOMAL DNAme SIGNATURES EXIST
IN THE HUMAN PLACENTA.

Placental autosomal DNAme patterns are continuous between the
sexes, rather than discrete. This may be related to interactions between
autosomal and X chromosomal loci; other unmeasured biological factors
may contribute (e.g. Fetal or maternal sex hormones).

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-
ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim
veniam, quis.

Sex-specific autosomal DNAme reflects sex-specific function of the
human placenta and may provide insight into fetal health sex disparities,
but is not sufficient to explain sex-specific outcomes.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-
ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim

function.

Conclusions

1

-

Robust sex-specific autosomal DNAme
signatures exint in the human placenta
Placental sutosomal DNAmMe patterns are
continuous between the sexes, rather than
discrete. This may be related to interactions
between autosamal and X chromosomad loc
omther unmeasured Dlological Factors may
comtribyte (o8 Fetal or maternal sex
hormones)

Sex-specific autosomal DNAme reflects sex
wpecific function of the human placenta and may
provide insight into fetal health sex dasparities
but is not sufficient to explain sex-specific
outcomes

veniam, quis.

Samples & Methods  lliumina 450K DNAme data from healthy normal placentas were obtained
GEO Accession Samples (n, % female)  FOM publicly available datasets (>37 weeks gestation, no preeclampsia, no
GSE73375, GSE74738,  known chromosomal abnormalities). Sample sex was assessed with XY
GSE75248, GSE100197, - nrobes. Data were BMIQ normalized and filtered to remove poor quality,
GSE100857, GSE128827 (341, 51%) . ot '
GSE70453 (validation) (72, 479%) Mon-variable, non-specific, and XY probes (nfilt=161,408). Log-transformed

GSE115508 (validation) (44, 45%) M values at 324,104 autosomal CpG sites used in downstream analysis.

Thank you to all patients and families who kindly donated samples, and members of the

Robinson Lab, especially WPR, VY, MSP, and GDG for valuable feedback. This work was
supported by the Department of Medical Genetics (UBC) and the Canadian Institutes of

Health Research (ICT-163379,CIHR SVB-158613).
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* There were no significant differences by sex in
average DNAme at all autosomal loci or at Alu
or LINE1 elements.

Genome-wide placental DNAme is not sex-specific
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There were no significant differences by
sex in average DNAme at all autosomal
loci or at Alu or LINE1 elements.



Sex-specific differentially methylated sites Sex-specific differentially methylated sites are biologically interesting

are biologically interesting ARHGAP15 (chr2) ZNF300 (chré)
present in placental exomes higher expression in female placentas
* ARHGAP1S5 (chr2, higher female DNAme in gene body) 5 5
present in placental exosomes.® . l L
A 3 . 0.90 — 0.90
«  ZNF300 (chr6, higher male DNAme near TSS), higher . ik T
expression in female placentas.” 060 ;4 . l l '|' T
STmE 1T 1 1=
ARHGAP1S P LI T
ZNF300 as. 0.30 L2 0.30 T T
a4 B T
| i, 0.00 " 0.00
o 0 200 400 600
m : a4 = distance to TSS
> o Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut laoreet
L_.'_ .’(~ dolore magna aliquam erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscip-
| it lobortis nisl ut aliquip ex ea commodo consequat. Duis autem vel eum iriure dolor in hendrerit in vulputate velit

| esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim
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Specific autosomal CpG sites are

differentially methylated by sex

* Unear modefling on M-values was used to test for differential
DNAme (DM) by sex at autosormnal CpG sites, with Bayesian-

moderated tstatistics,

DNAme, = Sex, + Dataset, + GA, + Ethnicity + £,

$OR M: wl) ‘ »% » 10N » IO
~ e e Sy “
<05 M NS 104} 1o 1
— ' ——— + + - - -
«0.01 14,104 2,082 166 1
e |
S e [Tk | e e s
e
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.2 aae
AdlVey &
. - = vt
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seansit

fanam

sduwied O3
* Volcano plot of 324,104 autosomal CpGs, 166 top DM lod
satisfying a false discovery rate <0.01, and AB>0.10, where
OB = B = Bl Adjusted for GA, ethnicity, and dataset

Sex-specific differentially methylated sites

are biologically interesting

*  ARHGAPI1S (chr2, higher female DNAme in gene body)
present in placental 2xosomes,”

*  ZNF300 (chr6, higher male DNAmse near T55), higher
expression in fomale placentas.®

+ 3
SEESPAIo DItAOS PRIBMIS WRIKIAtE in
independent cohorts
= NI GSET 00
o O et

oy ot

* Samples cluster by sex in two independent datasets GSE70453
and GSE115508 at top 166 DM lodi, suggesting a robust sex
effect at these locl. *Indicates pel. 2e-16 (sipClust2) and stable
{pwciust) AU>80 cluster

« Significant patterns of differential DNAme by sex validate at

BONNY i bt laa FCTETNACY wmdd DAY ID B i D% "2

Specific autosomal CpG sites are differentially
methylated by sex

DNAme;; ~ sex; + dataset; + GA; + ethnicity; + &;;
324,104 autosomal CpGs. Adjusted for GA, ethnicity, and dataset.

FDR A8 >0 >5% >10% > 20%
<0.05 24,715 2,942 166 4
<0.01 14,108 2,682 166 4
* nn,x%
—log1o FDR * nn,y%
40
o ® SPON1
[ )
30 CAMTA1 °
® _ee °
e ZNF300
20 ®e
e ZNF300

10

FDR = 0.01
0

-0.10

0.10

0
Aﬁ = .Bmale - ,Bfemale

Sex-specific DNAme GSE70453 GSE115508
patterns validate in
independent cohorts

Samples cluster by sex in two inde-

pendent datasets at top 166 DM p < 10-15 p <10-15
loci, suggesting a robust sex effect

at these loci. P-value from sigClust2. AU> 80 AU> 80
Cluster stable (pvclust) at AU > 80.

Significant patterns of differential

DNAme by sex validate at 90% of

loci in GSE70453 and GSE115508

(R=0.62, p<2.2e-16).
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BACKGROUND RESULTS - Genetic Differences in Vulnerability to Ethanol-Induced Apoptosis

» Fetal Alcohol Spectrum Disorder (FASD] Is caused by fetal
exposure to alcohol consumed by mothers during pregnancy

»  Meost common preventable cause of developmental disabéity in
Canada; over 3000 Canadian newborns diagnosed annually’

#  Characterized by abnormal brain development, !
cognitive/learning deficits, behavioural issues, and/or specific :
patterns of physical defects? - l I I l, l
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» Research in mouse models imphicates ethanol-induced apoptosis :
(i.e, programmed cell death) as one process contributing to 3 |
diseuption in earty beain development! :

» Severity of ethanol's effects appears to vary depending on :
genetic background; how and which genes are involved in ' oy -
susceptibility or resistance to alcohol remain fargely unknown .
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Genetic Influences on the Severity of Ethanol-induced
Cell Death in the Developing Prenatal Brain
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal exposure to alcohol
consumed by mothers during pregnancy [1]. It is the most common preventable

: cause of developmental disability in
r"’ q\ﬁmimepha.y Canada — over 3000 Canadian
[ ——— low nasal bridge

newborns diagnosed annually [2].

small palpeb,alfissu,esHJ:I__ ®—— epicanthal folds FASD is characterized by abnormal
S taper I —— s aomelites brain development, cognitive/learning
deficits, behavioural issues, and/or

specific patterns of physical defects.

Research in mouse models implicates ethanol-induced apoptosis (i.e.
programmed cell death) as one process contributing to disruption in early brain
development [4]. Severity of ethanol’s effects appears to vary depending on
genetic background; how and which genes are involved in susceptibility or
resistance to alcohol remain largely unknown. Genetic influences may be important
for screening, prevention, and therapeutic treatment of FASD.

1. Roberts, G., & Nanson, J. (2000). Best practices. Fetal alcohol syndrome/fetal alcohol effects and the effects of other substance use during pregnancy. Onawa, ON: Canada’s Drug
Strategy Division, Health Canada. 2. Popova, S., Lange, S., Burd, L., & Rehm, J. (2015). The Burden and Economic Impact of Fetal Alcohol Spectrum Disorder in Canada. Toronto, ON,
Canada: Centre for Addiction and Mental Health. ISBN, 978-1. 3. Dorrie, N., Fécker, M., Freunscht, ., Hebebrand, J. (2014). Fetal alcohol spectrum disorders. European Child &
Adolescent Psychiatry, 23(10). 4. Ogawa, T., Kuwagata, M., Ruiz, J., Zhou, F. C. (2005). Differential teratogenic effects of alcohol on embryonic development between C57BL/6J and
DBA/2 mice: A new view. Alcohol Clinical & Experimental Research, 29(5)

TUNEL AND APOPTOTIC CELLS PER MM2
6,000

Objectives

Demonstrate genetic differences in vulnerability to the
apoptotic effects of prenatal alcohol exposure. Use
Quantitative Trait Locus (QTL) analysis to identify genes
involved in susceptibility or resistance to ethanol-induced
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced
apoptosis between BXD strains, suggesting that genetic
differences influence the severity of the effects of prenatal
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified
BXD strains with the C57BL/6J genetic background at these
QTLs were more susceptible to ethanol-induced apoptosis.

Candidate genes at these two QTLs may play an important
role in vulnerability; are potential future targets for prenatal
screening and therapeutic intervention of FASD.
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Images of the developing brainstem from a susceptible and
resistant mouse BXD strain, treated with ethanol on embryonic
day 9 (E9.0). Apoptotic cells were labelled using the terminal
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)
assay. Cell nuclei of nonapoptotic cells were counterstained with
methyl green. The arrow indicates a greater amount of cell death
in the susceptible strain.
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BACKGROUND

» Fetal Alcohol Spectrum Disorder (FASD) Is caused by fetal
exposure to alcohol consumed by mothers during pregnancy’

» Meost common preventable cause of developmental disabidity In
Canada; over 3000 Canadian newborns diagnosed annually’

#  Characterized by abnormal brain development,
cognitive/learning deficits, behavioural issues, and/or specific
patterns of physical defects’

Flgume | Typical crariotacial defects of Asl Slowr Tenat Akotol Spectrum
Otiortier [PASUL hrarwn 4 Pt Acobed Symeiroens [PAS)

» Research in mouse models imphcates ethanol-induced apoptosis
(i.e, programmed cell death) as one process contributing to
diseuption in early brain development”

» Severity of ethanol's effects appears to vary depending on
genetic background; how and which genes are involved in
susceptibility or resistance to alcohol remain fargely unknown

» Genetic influences may be important for screening, prevention,
and therapeutic treatment of FASD

OBJECTIVES

» Demonstrate genetic differences in vulnerability to the apoptotic
etfects of prenatal alcohol exposure

» Use Quantitative Trait Locus (QTL) analysis to identify genes
Involved In susceptibility or resistance to ethanol-induced
apoptosis In the developing brain

CONCLUSIONS & FUTURE DIRECTIONS

# There is significant variation in vulnerability to ethanol-induced
apoptosis between BXD strams, suggesting that genetic differences
influence the severity of the effects of prenatal alcohol exposure

7 Suggestive QTLs on chromesomes 4 and 14 were identified

» BXD strains with the CS7BL/6! genetic background at these QTLs were
more susceptible o ethanol.induced apaptosis

7 Candidate genes at these two GTLs may play an important role in
vuinerability; are potential future targets for prenatal screening and
therapeutic Intervention of FASD




Genetic Influences on the Severity of Ethanol-induced
Cell Death in the Developing Prenatal Brain
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal exposure to alcohol
consumed by mothers during pregnancy [1]. It is the most common preventable
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Research in mouse models

cause of developmental disability in
Canada — over 3000 Canadian
newborns diagnosed annually [2].
FASD is characterized by abnormal
brain development, cognitive/learning
deficits, behavioural issues, and/or
specific patterns of physical defects.

implicates ethanol-induced apoptosis (i.e.

programmed cell death) as one process contributing to disruption in early brain
development [4]. Severity of ethanol’s effects appears to vary depending on
genetic background; how and which genes are involved in susceptibility or
resistance to alcohol remain largely unknown. Genetic influences may be important
for screening, prevention, and therapeutic treatment of FASD.

1. Roberts, G., & Nanson, J. (2000). Best practices. Fetal alcohol syndrome/fetal alcohol effects and the effects of other substance use during pregnancy. Onawa, ON: Canada’s Drug
Strategy Division, Health Canada. 2. Popova, S., Lange, S., Burd, L., & Rehm, J. (2015). The Burden and Economic Impact of Fetal Alcohol Spectrum Disorder in Canada. Toronto, ON,
Canada: Centre for Addiction and Mental Health. ISBN, 978-1. 3. Dorrie, N., Fécker, M., Freunscht, ., Hebebrand, J. (2014). Fetal alcohol spectrum disorders. European Child &
Adolescent Psychiatry, 23(10). 4. Ogawa, T., Kuwagata, M., Ruiz, J., Zhou, F. C. (2005). Differential teratogenic effects of alcohol on embryonic development between C57BL/6J and

DBA/2 mice: A new view. Alcohol Clinical & Experimental Research, 29(5)

Objectives

Demonstrate genetic differences in vulnerability to the
apoptotic effects of prenatal alcohol exposure. Use
Quantitative Trait Locus (QTL) analysis to identify genes
involved in susceptibility or resistance to ethanol-induced
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced
apoptosis between BXD strains, suggesting that genetic
differences influence the severity of the effects of prenatal
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified
BXD strains with the C57BL/6J genetic background at these
QTLs were more susceptible to ethanol-induced apoptosis.

Candidate genes at these two QTLs may play an important
role in vulnerability; are potential future targets for prenatal
screening and therapeutic intervention of FASD.



1) Mating

Male and female mice of
the same strain were mated
during a 4 hour period.

2) Treatment

At day 9 of pregnancy
(ES.0), pregnant dames
were treated twice, 2 hours
apart with either ethano!
(EtOH, 5.9g/kg), or an
isocaloric maltose-dextran
(MD) sugar control.

3) Harvest

7 hours after treatment,
embryos were collected
from dames and embedded
in paraffin wax.
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4) Sectioning & Mounting
Paraffin embedded
embryos were sectioned
using a microtome at 8um,
and sections were mounted
onto glass slides.

5) TUNEL Staining
Apoptotic cells in the
brainstem were labelled
using the terminal dUTP
nick-end labeling (TUNEL)
assay and counted.

6) QTL Analysis
Quantitative Trait Locus
(QTL) analysis was done
using GeneNetwork
(www.genenetwork.org),
and candidate genes were
identified.
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Chr 4 QTL interval

C57BL/6J

DBA/2

BXD mice were grouped based on presence
of the B6 or D2 allele at each QTL interval,
and the average number of ethanol-induced
apoptotic cells were compared. Inheritance
of B6 alleles is associated with significantly
higher susceptibility to ethanol-induced
apoptosis (p < 0.01).
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6,000
BXD mice were grouped based on presence
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apoptotic cells were compared. Inheritance
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higher susceptibility to ethanol-induced
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6,000
BXD mice were grouped based on presence
of the B6 or D2 allele at each QTL interval,
and the average number of ethanol-induced
apoptotic cells were compared. Inheritance
of B6 alleles is associated with significantly
higher susceptibility to ethanol-induced
apoptosis (p < 0.01).
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Figure 2. Reprusentative images of the developing brainstem from (A} susceptible and (B} resistant
mouse BXD strains, treated with ethanol on embryonic day 9 (E9.0). Apoptotic cells were labelled
using the terminal deaxynuclentidyl transferase dUTP nick-end labeling (TUNEL) assay. Cell nudle
of nonapoptotic cells were countecstsined with methyd green. The ted arrow Indscates a greator
amount of cell death in the susceptible strain
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Figure 3, Differences in vuinerabillity to ethanol-induced apoptosis in the mwa BXD panel, The number of apoptotic (TUNEL positive) cells per
mim’ was mexsured in mouse embryos treated with ethanal (EtOM, red) and a maltose-dextran (MD, blue) sagar contral at embiryome day 9 (£9.0).
Batween strains, there was a significant difference {p < 0.001) in apoptosis means after EXOH treatment, but no significant difference (p = 0.084)
after MD 1reatment. Compatisans between treatments within strain reported significant differonces (p < 0.05) i apoptoss meany in the CS78L/6),
8X0D 51, BXD 96, and BYXD 100 strains, indicating that these strains show the highest vulnerability 1o ethanol-induced apoptosis..
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Images of the developing brainstem from a susceptible and
resistant mouse BXD strain, treated with ethanol on embryonic
day 9 (E9.0). Apoptotic cells were labelled using the terminal
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)
assay. Cell nuclei of nonapoptotic cells were counterstained with
methyl green. The arrow indicates a greater amount of cell death
in the susceptible strain.
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Figure 3. Differences in vulnerability to ethanol-induced apoptosis in the mouse BXD panel. The number of apoptotic (TUNEL positive) cells per
mm? was measured in mouse embryos treated with ethanol (EtOH, red) and a maltose-dextran {MD, blue) sugar control at embryonic day 9 (£9.0).
Between strains, there was a significant difference (p < 0.001) in apoptosis means after EtOH treatment, but no significant difference (p = 0.084)
after MD treatment. Comparisons between treatments within strain reported significant differences {p < 0.05) in apoptosis means in the CS7BL/6EI,
BXD 51, BXD 96, and BXD 100 strains, indicating that these strains show the highest vulnerability to ethanol-induced apoptosis..
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Figure 5. The Influence of the CS7BL/6I (B6) and DBA/2 (D2) alleles
on vulnerability to ethanol-induced apoptosis at the suggestive QTL
intervals on chromosomes 4 and 14. BXD mice were grouped based
on presence of the B6 or D2 allele at each QTL interval, and the
average number of ethanol-induced apoptatic celis were compared.
Inheritance of B6 alleles is associated with significantly higher
susceptibility to ethanol-induced apoptosis (p < 0.01).
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Figure 3. Differences in vuinerability to ethanol-induced apoptosis in the moose BXD panel. The number of apoptotic (TUNEL positive) cells per
mm? was measured In mouse embryos treated with ethanol (EtOH, red) and a maltose-dextran (MD, blue) sugar control at embryonic day 9 (£9.0).
Between strains, there was a significant difference (p < 0.001) in apoptosis means after EtOH treatment, but no significant difference (p = 0.084)
after MD treatment. Comparisons between treatments within strain reported significant differences (p < 0.05) in apoptosis means in the C578L/6),
BXD 51, BXD 96, and BXD 100 strains, indicating that these strains show the highest vulnerability to ethanol-induced apoptosis..

ADCD
1 2 LV
w07 Alnle
Swoo
8
20
L3000
év.a:‘
2 1000
= w0
0
Ciw 4OTL ld.ner\So 13510y Che 2 OTL bdgronl | LESA 16 655)

QTL intervals

Figure 5. The influence of the C57BL/6J (B6) and DBA/2 (D2) alleles
on vulnerability to ethanol-induced apoptosis at the suggestive QTL
intervals on chromosomes 4 and 14, BXD mice were grouped based
on presence of the BS or D2 allele at each QTL interval, and the
average number of ethanol-induced apoptotic cells were compared.
Inheritance of B6 alleles is associated with significantly higher
susceptibility to ethanol-induced apoptosis (p < 0.01).
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BXD mice were grouped based on presence
of the B6 or D2 allele at each QTL interval,
and the average number of ethanol-induced

DBA/2 apoptotic cells were compared. Inheritance
of B6 alleles is associated with significantly
higher susceptibility to ethanol-induced
apoptosis (p < 0.01).
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Figure 4, Quantitative Tralt Locus (QTL) Interval mapping of ethanol-induced apoptosis in the brainstem, (A) Whole genome QTL map. The x-axis represents chromosomes 1-19, & X
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Figure 4. Quantitative Trait Locus (QTL) Interval mapping of ethanol-induced apoptosis in the brainstem. (A) Whole genome QTL map. The x-axis represents chromosomes 1-19, & X
and their physical maps in megabases. The y-axis and the blue line indicate the likelihood ratio statistic (LRS), which reports the strength of association between variations in genotype
and the phenotype (i.e. ethanol-induced apoptosis). The red and gray horizontal lines respectively mark the significant {p = 0.05) and suggestive {p = 0.63) thresholds: Peaks that reach
these thresholds indicate genome regions containing candidate genes that may be implicated in ethanol-induced apoptosis. (8, €) Maps of the suggestive QTLs on chromosome 4 (LRS
= 13.510) and chromaosome 14 (LRS = 15.655) were expanded to analyze candidate genes and single nucleotide palymorphisms (SNPs, yellow peaks on the x-axis) at each locts
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal
exposure to alcohol consumed by mothers during pregnancy
[1]. It is the most common preventable cause of
developmental disability in Canada — over 3000 Canadian
newborns diagnosed annually [2].
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(FASD), known as Fetal
Alcohol Syndrome (FAS).

FASD is characterized by abnormal brain development,
cognitive/learning deficits, behavioural issues, and/or specific
patterns of physical defects.

Research in mouse models implicates ethanol-induced
apoptosis (i.e. programmed cell death) as one process
contributing to disruption in early brain development [4].
Severity of ethanol’s effects appears to vary depending on
genetic background; how and which genes are involved in
susceptibility or resistance to alcohol remain largely unknown.
Genetic influences may be important for screening,
prevention, and therapeutic treatment of FASD.

Objectives

Demonstrate genetic differences in vulnerability to the
apoptotic effects of prenatal alcohol exposure.

Use Quantitative Trait Locus (QTL) analysis to identify genes
involved in susceptibility or resistance to ethanol-induced
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced
apoptosis between BXD strains, suggesting that genetic
differences influence the severity of the effects of prenatal
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified
BXD strains with the C57BL/6J genetic background at these
QTLs were more susceptible to ethanol-induced apoptosis.
Candidate genes at these two QTLs may play an important
role in vulnerability; are potential future targets for prenatal
screening and therapeutic intervention of FASD.
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal exposure to alcohol
consumed by mothers during pregnancy [1]. It is the most common preventable
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Canada — over 3000 Canadian
newborns diagnosed annually [2].
FASD is characterized by abnormal
brain development, cognitive/learning
deficits, behavioural issues, and/or
specific patterns of physical defects.
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Objectives

Demonstrate genetic differences in vulnerability to the
apoptotic effects of prenatal alcohol exposure. Use
Quantitative Trait Locus (QTL) analysis to identify genes
involved in susceptibility or resistance to ethanol-induced
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced
apoptosis between BXD strains, suggesting that genetic
differences influence the severity of the effects of prenatal
alcohol exposure.
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Gordon Andrews (designer)

Gazelle chair (c. 1950) designed, 1957 manufactured
plywood, aluminium, wool
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