In all organisms, DNA is the matter of inheritance. As such, DNA provides the blueprint to build and operate each individual organism. Decoding the information contained in the DNA is thus a key process, termed ‘transcription’. Transcription needs to happen at the right time and in the right place, and deregulated transcription causes diseases such as cancers, diabetes, and developmental abnormalities. But how does a creature transcribe the specific DNA programs to develop a normal, functioning organ, or to adapt its life-style to a specific external influence?

My lab studies the so-called ‘Mediator’, a molecular machine that is required for transcription: without it, the information contained in DNA cannot be properly decoded. Intriguingly, several Mediator subunits are mutated in human diseases, including certain cancers and neurodevelopmental disorders, but how and why the Mediator mutations cause disease remains poorly understood.

Our mission is to define why and how Mediator function assures normal development, prevents sickness, and promotes healthy aging. We use the worm Caenorhabditis elegans and the house mouse as experimental animal models, because they share certain aspects of human biology, and because we can control their genetics. With this approach we dissect how individual Mediator subunits regulate lipid metabolism and fat storage, detoxification programs, organ development and differentiation pathways, and aging. By providing new insights into how DNA is transcribed, our investigations may lead to new diagnostics and/or therapeutics that can help cure human diseases.


Activity of translation regulator eukaryotic elongation factor-2 kinase is increased in Parkinson disease brain and its inhibition reduces alpha synuclein toxicity
Acta Neuropathologica Communications
PubMed: 29961428

NHR-49/HNF4 integrates regulation of fatty acid metabolism with a protective transcriptional response to oxidative stress and fasting
Aging Cell
Grace Y. S. Goh, Johnathan J. Winter, Forum Bhanshali, Kelsie R. S. Doering, Regina Lai, Kayoung Lee, Elizabeth A. Veal, Stefan Taubert
DOI: 10.1111/acel.12743

The R148.3 Gene Modulates Caenorhabditis elegans Lifespan and Fat Metabolism
G3: Genes|Genomes|Genetics
Catherine Roy-Bellavance, Jennifer M. Grants, Stéphanie Miard, Kayoung Lee, Évelyne Rondeau, Chantal Guillemette, Martin J. Simard, Stefan Taubert, Frédéric Picard
DOI: 10.1534/g3.117.041681

Genomic and Cytogenetic Characterization of a Balanced Translocation Disrupting
Cytogenetic and Genome Research
My Linh Thibodeau, Michelle Steinraths, Lindsay Brown, Zheyuan Zong, Naomi Shomer, Stefan Taubert, Karen L. Mungall, Yussanne P. Ma, Rosemary Mueller, Inanc Birol, Anna Lehman
DOI: 10.1159/000479463

eEF2K inhibition blocks Aß42 neurotoxicity by promoting an NRF2 antioxidant response
Acta Neuropathologica
Asad Jan, Brandon Jansonius, Alberto Delaidelli, Syam Prakash Somasekharan, Forum Bhanshali, Milène Vandal, Gian Luca Negri, Don Moerman, Ian MacKenzie, Frédéric Calon, Michael R. Hayden, Stefan Taubert, Poul H. Sorensen
DOI: 10.1007/s00401-016-1634-1

Gain-of-Function Alleles in Caenorhabditis elegans Nuclear Hormone Receptor nhr-49 Are Functionally Distinct
Kayoung Lee, Grace Ying Shyen Goh, Marcus Andrew Wong, Tara Leah Klassen, Stefan Taubert
DOI: 10.1371/journal.pone.0162708

Bacterial diet affects vulval organogenesis in Caenorhabditis elegans Mediator kinase module mutants
Jennifer Grants and Stefan Taubert
DOI: 10.19185/matters.201605000012

Caenorhabditis elegans Gets Metabolic Network Models
Cell Systems
Stefan Taubert
DOI: 10.1016/j.cels.2016.05.003

s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways
Cell Metabolism
Wei Ding, Lorissa J. Smulan, Nicole S. Hou, Stefan Taubert, Jennifer L. Watts, Amy K. Walker
DOI: 10.1016/j.cmet.2015.07.013

The Mediator complex of Caenorhabditis elegans: insights into the developmental and physiological roles of a conserved transcriptional coregulator
Nucleic Acids Research
Jennifer M. Grants, Grace Y. S. Goh, Stefan Taubert
DOI: 10.1093/nar/gkv037

The Mediator Kinase Module Restrains Epidermal Growth Factor Receptor Signaling and Represses Vulval Cell Fate Specification in Caenorhabditis elegans
J. M. Grants, L. T. L. Ying, A. Yoda, C. C. You, H. Okano, H. Sawa, S. Taubert
DOI: 10.1534/genetics.115.180265

Membrane lipids and the endoplasmic reticulum unfolded protein response: An interesting relationship
Nicole S Hou, Stefan Taubert
DOI: 10.4161/21624046.2014.962405

Activation of the endoplasmic reticulum unfolded protein response by lipid disequilibrium without disturbed proteostasis in vivo
Proceedings of the National Academy of Sciences
N. S. Hou, A. Gutschmidt, D. Y. Choi, K. Pather, X. Shi, J. L. Watts, T. Hoppe, S. Taubert
DOI: 10.1073/pnas.1318262111

The conserved Mediator subunit MDT-15 is required for oxidative stress responses inCaenorhabditis elegans
Aging Cell
Grace Y. S. Goh, Katherine L. Martelli, Kulveer S. Parhar, Ada W. L. Kwong, Marcus A. Wong, Allan Mah, Nicole S. Hou, Stefan Taubert
DOI: 10.1111/acel.12154

The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation
Developmental Biology
Andreas Steimel, Jinkyo Suh, Angela Hussainkhel, Samineh Deheshi, Jennifer M. Grants, Richard Zapf, Donald G. Moerman, Stefan Taubert, Harald Hutter
DOI: 10.1016/j.ydbio.2013.02.009

Coordinate Regulation of Lipid Metabolism by Novel Nuclear Receptor Partnerships
PLoS Genetics
Pranali P. Pathare, Alex Lin, Karin E. Bornfeldt, Stefan Taubert, Marc R. Van Gilst
DOI: 10.1371/journal.pgen.1002645

Repression of a Potassium Channel by Nuclear Hormone Receptor and TGF-ß Signaling Modulates Insulin Signaling in Caenorhabditis elegans
PLoS Genetics
Donha Park, Karen L. Jones, Hyojin Lee, Terrance P. Snutch, Stefan Taubert, Donald L. Riddle
DOI: 10.1371/journal.pgen.1002519

Function and Regulation of Lipid Biology in Caenorhabditis elegans Aging
Frontiers in Physiology
Nicole Shangming Hou, Stefan Taubert
DOI: 10.3389/fphys.2012.00143

Somatic Differentiation and MR Imaging of Magnetically Labeled Human Embryonic Stem Cells
Cell Transplantation
Hossein Nejadnik, Tobias D. Henning, Rosalinda T. Castaneda, Sophie Boddington, Stefan Taubert, Priyanka Jha, Sidhartha Tavri, Daniel Golovko, Larry Ackerman, Reinhard Meier, Heike E. Daldrup-Link
DOI: 10.3727/096368912x653156

Nuclear hormone receptors in nematodes: Evolution and function
Molecular and Cellular Endocrinology
Stefan Taubert, Jordan D. Ward, Keith R. Yamamoto
DOI: 10.1016/j.mce.2010.04.021

SET(BP1)-ing the stage for a better understanding of Schinzel-Giedion syndrome
Clinical Genetics
S Taubert
DOI: 10.1111/j.1399-0004.2010.01505.x

Functional modularity of nuclear hormone receptors in a Caenorhabditis elegans metabolic gene regulatory network
Molecular Systems Biology
H Efsun Arda, Stefan Taubert, Lesley T MacNeil, Colin C Conine, Ben Tsuda, Marc Van Gilst, Reynaldo Sequerra, Lynn Doucette-Stamm, Keith R Yamamoto, Albertha J M Walhout
DOI: 10.1038/msb.2010.23

The Mediator Subunit MDT-15 Confers Metabolic Adaptation to Ingested Material
PLoS Genetics
Stefan Taubert, Malene Hansen, Marc R. Van Gilst, Samantha B. Cooper, Keith R. Yamamoto
DOI: 10.1371/journal.pgen.1000021

Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans
Aging Cell
Malene Hansen, Stefan Taubert, Douglas Crawford, Nataliya Libina, Seung-Jae Lee, Cynthia Kenyon
DOI: 10.1111/j.1474-9726.2006.00267.x

A Mediator subunit, MDT-15, integrates regulation of fatty acid metabolism by NHR-49-dependent and -independent pathways in C. elegans
Genes & Development
S. Taubert
DOI: 10.1101/gad.1395406

E2F-Dependent Histone Acetylation and Recruitment of the Tip60 Acetyltransferase Complex to Chromatin in Late G1
Molecular and Cellular Biology
S. Taubert, C. Gorrini, S. R. Frank, T. Parisi, M. Fuchs, H.-M. Chan, D. M. Livingston, B. Amati
DOI: 10.1128/mcb.24.10.4546-4556.2004

MYC recruits the TIP60 histone acetyltransferase complex to chromatin
EMBO reports
Scott R Frank, Tiziana Parisi, Stefan Taubert, Paula Fernandez, Miriam Fuchs, Ho-Man Chan, David M Livingston, Bruno Amati
DOI: 10.1038/sj.embor.embor861

Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation
Genes & Development
S. R. Frank
DOI: 10.1101/gad.906601

Function of the c-Myc oncoprotein in chromatin remodeling and transcription
Biochimica et Biophysica Acta (BBA) - Reviews on Cancer
Bruno Amati, Scott R. Frank, Dubravka Donjerkovic, Stefan Taubert
DOI: 10.1016/s0304-419x(01)00020-8

Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development inStreptomyces coelicolor
Molecular Microbiology
Urs Süsstrunk, Josette Pidoux, Stefan Taubert, Agnes Ullmann, Charles J. Thompson
DOI: 10.1046/j.1365-2958.1998.01033.x


Current Projects
Conservation of MED15 function in mammals: Given the metabolic regulatory role of MDT-15 in C. elegans, we are testing whether MED15, its mammalian homologue, performs similar functions. Using candidate and unbiased genomic approaches we aim to identify MED15's transcriptional targets and biological functions in cultured cells. Additionally, we have generated tissue-specific MED15 loss-of-function and we are now investigating their metabolic and developmental phenotypes.

Current Projects
MDT-15 interacting factors and molecular determinants: MDT-15 is the centre of a regulatory network that includes many Nuclear Hormone Receptors (NHRs). However, which, if any, part of MDT-15’s function these NHRs perform is unclear; moreover, we do not yet understand the molecular details of these interactions. Using advanced genetic, genomic, and biochemical methods, we are defining the individual roles of this network’s components.

Current Projects
MDT-15 driven metabolic homeostasis: MDT-15 is required to maintain metabolic homeostasis in C. elegans, but how altered lipid balance affects organelle, cellular, and organismal function remains poorly understood. Our experiments aim to delineate the consequence of lipid imbalances in worms lacking mdt-15, and how lipid metabolism and oxidative stress responses impinge on organismal health and aging.

Honours & Awards

CIHR Catalyst Grant (2010-2011)

NSERC Discovery Grant (2013-2018)

Canada Research Chair Tier 2 - renewal (2014-2019)

Research Group Members

Naomi Shomer
Luxcia Kugathasan, Undergraduate Student
Caitlyn Xu
Deema Alhusari
Kelsie Doering
Andy Yi An, Student
Alexandre Kadhim
Forum Bhanshali
Yoojeen Ahn, Undergraduate Student
Xuanjin Cheng
Jung In Park, Undergraduate Student
Michelle Kang
Yuchen Bo
Jorge Vallejos
Zoe DeBoer